

IEEE Technology Time Machine **IEEE** Symposium on Technologies Beyond 2020

A Future Directions Event | 23 – 25 May 2012 | Dresden, Germany

IEEE Technology Time Machine Symposium on Technologies Beyond 2020

Smart Grids: Enel Experience and Projects

Dresden, 23 – 25 May 2012

Eugenio Di Marino Head of Engineering & Standardization Enel Distribuzione spa

Summary

Smart Grids as a solution

Enel: a World dimension

Focus on major areas of presence

NORTH AMERICA

Diversified presence in the main renewable technologies (hydro, geothermal, wind)

CENTRAL AMERICA

Hydro and wind power plants in Costa Rica, Panama, El Salvador and Guatemala

COLUMBIA

- First operator in generation (21%)
- Second operator in distribution (15%)
- 2,3 mln clients

SLOVAKIA

• First operator in generation (83%)

FRANCE

- 12,5% in Flamanville, EPR technology (1,600 MW)
 Notable presence in wind
- generation

RUSSIA

 First vertically integrated foreign operator (upstream gas, generation, supply)

ROMANIA

- Second operator in distribution (30%)
- distribution (30%
- 2,6 mln clients

ITALY

- First operator in generation (26%)
- First operator in distribution (84%)
- 33 mln clients (electricity and gas)

• First operator in

PERU

- generation (30%)Second operator in distribution (19%)
- 1,2 mln clients

CHILE

- First operator in generation (37%)
- First operator in distribution (32%)
- 1,6 mln clients

BRAZIL

• 5,4 mln clients

ARGENTINA

- First operator in generation (16%)
- Second operator in distribution (17%)
- 2,3 mln clients

SPAIN

- First operator in generation (26%)
- First operator in distribution (43%)
- 13 mln clients (electricity and gas)

A fully integrated global energy player

Infrastructure and Network Division

Main Business Areas and Figures

Electricity networks Business Area

- 4 Macro-Regions
- 11 Local Branches
- 11 Control Centers
- 115 Offices
- 19.000 Employees
- Over 1.100.000 km lines
- About 2.000 HV/MV Substations
- Over 400.000 MV/LV Substations
- 32 million customers

Public lighting Business Area

- 5 Local Branches
- 330 Employees
- 1.925.000 Spot-lights
- 4.000 Municipalities served

Gas network Business Area

- 4 Local Branches
- 21 Control Centers
- 1.300 employees
- 630 Primary Plants
- About 30.600 km gas pipelines
- 2 million customers

The 2° largest Distribution Operator in Europe

Enel Distribuzione's Network

Enel Distribuzione's Excellence

(Performance VS Cost Efficiency) or (Performance AND Cost Efficiency) ?

Quality of service SAIDI (minutes interruption/year)

European Benchmark for distribution Quality of Service and OPEX

Enel Distribuzione's Excellence

Enel and its "first generation" of Smart Grid

Automatic Meter Management

- Telegestore is fully operational on > 32 MIn Customers
- Leading Technology
- Excellence in operation

Network automation

- ▶ HV and MV network
- remotely operated
- More than 100.000 MV substations (25%) remotely controlled
- Automatic fault clearing procedures (self-healing network)

Work Force Management

- 5.200 vehicles equipped
- Logistic support to Enel crews
- ENEL cartographic available on board
- All processes through mobile applications
- Connection from field to the centre for Enel crews

Asset Management

- Cartographic census of network assets
- Database of network events (power outage notification, fault detection, etc.)
- Optimization of network investments based on a risk analysis.

Investment exceeding € 2,5 bn Dramatic reduction of cash-cost per customer

Summary

Smart Grids as a solution

The Development of Renewables

Connections to Enel Distribuzione's Network

LV+MV+HV Connections [No.]

Cumulative Data

11.423 FV (60 %) [MW] 19.096 20.000 18.000 16.000 14.000 12.000 9.080 10.000 8.000 6.361 6.000 4.710 4.000 3.101 2.373 2.000 0 Ante 2007 2007 2008 2009 2010 2011 LV MV HV **Connected Power LV+MV+HV** [MW] **Cumulative Data** Most RES-Power is connected to MV Network

"ENERGIA CHE TI ASCOLT

PV Growth in 2011 International Benchmark

■ Until 2010 ■ 2011

Impact of Distributed Generation

Energy Flow at TSO-DSO boundary: Avg. Load Curves (July 2011 Vs 2010)

ENEL Distribuzione

Valori MEDI

Impact of Distributed Generation

Connected DG vs Load at MV+LV Level

The "Game rules"

Consequences of present rules at system level

Current rules imply:

network design based on peaks (min load + max DG; max load + min DG);

 (up to 2012 31st March) no contribution to frequency regulation;

possible unintentional islanding;

 voltage levels along feeders depend on DG and network operators can't manage them.

Summary

The Evolution of the electricity system

Main European Strategic Drivers

Strategic Drivers

- Climate Change European
 Goals
- Large increase of unpredictable renewable energy sources
- ✓ Market liberalization
- Change in electricity consumption
- Replacement of ageing infrastructures

Distribution System Operators Goals

- ✓ Quality and security of supply
- Energy flow management and renewables integration
- Energy Efficiency
- Enable the active participation of customers to the energy market
- Support energy efficient demand side technologies
- Increase the network flexibility to face future scenarios

Networks are strategic enablers of a low carbon future

The Evolution of the electricity system

Smart Grid vision

An electricity network that intelligently integrates all actors for a sustainable, reliable and efficient electricity supply

L'ENERGIA CHE TI ASCOLTA

Smart metering in Spain: Cervantes Project

13 million installed Smart meters 2,000 new jobs

Improving Southern Italy Grid

- Advanced voltage regulation
- Distributed Generation Dispatching
- Increase of hosting capacity for RES connection
- Meshed network operation

Smart Grids Isernia Project

- Testing new technologies for Distributed Generation Management
- Ensuring high QoS and safety level
- Testing Energy Storage Systems

GRID4EU

- Large-Scale Demonstration of Advanced Smart GRID Solutions with wide Replication and Scalability Potential for EUROPE
- Enel demo aims at increasing increase MV network hosting capacity through active control and active demand response

Enel Smart Grid Projects: Active Demand Management

Ongoing Projects

- Address
 - Develop and test technical solutions for customers and the electricity network to enable "Active Demand"
 address
 - Identify market, regulatory and contractual mechanisms to facilitate the development of Active Demand and the penetration of distributed generation and renewable sources.
- Energy@Home
 - Development of a communication platform which enables value added services based on exchange of energy consumption information within the Home Area Network (HAN)

interactive

energy

Enel Smart Grid Projects: Electric mobility

e-mobility Italy in Italy

Movele, Carrefour, Green eMotion in Spain

- EV charging infrastructure:
 - Innovative and economic solution
 - Innovative technologies, compliant to regulations
 - Solutions ready to support Smart Grids functionalities (charging and storage management)

1,000 Points of Recharge

Infrastructure Development for large scale electric mobility

Public and artistic lighting

Enel Sole Archilede

First european illumination product with Led technology

- ✓ > 80,000 LEDs sold
- Average energy saving -55%
 >12,800 tons of CO₂ avoided
- Artistic lighting development (average energy saving -40/60%)

Innovation, energy saving, security and lighting culture

Smart Cities

The cities: the cause and the solution

- Cities averagely consume 60-80% of the World's energy production
- Cities are responsible for most of the Greenhouse Gas emissions
- ✓ 50%-59% of the World's population will live in cities within the next 20 years

While most of the CO_2 emissions are produced in the cities, cities can also represent a solution. Energy Efficiency can be dramatically improved in a city.

Smart Cities

Smart Grid as enabler: the new role of DSO towards Smart Cities

"Smart" measures on electricity grid represent a cross element to the "Smart Cities" concept and they are the enabling factor for the development and of implementation various related to measures energy **CO**₂ emissions efficiency and reduction.

European contribution expected: 7% of total investment ✓ New green jobs expected^(*): 10.000

> DSO contribution to CO₂ emissions reduction is 30% related to Municipality target

(*) The evaluation has been developed for city with more o less 400.000 inhabitants

...to optimize the system ?

.... Any Questions...?

Thanks for your attention !

