BER-PHYSICAL SYSTEMS

- ir: Alberto Sangiovanni-Vincentelli,
- Edgar L. and Harold H. Buttner Chair of EECS, University of California erkeley
- akers A. Jacobson, United Technologies iu, Microsoft Research Wristers, GLOBALFOUNDRIES

<u>llenger</u> v<mark>ard Lee</mark>, University of California at Berley

hnology Time Machine um on Technologies 020

5, 2012*.* Germany

e Emerging IT Scene!

mputers and mobiles to disappear!

edictions: 7 trillions devices servicing 7 billion people! 1,000 devices per person by 2025

The Immersed Human

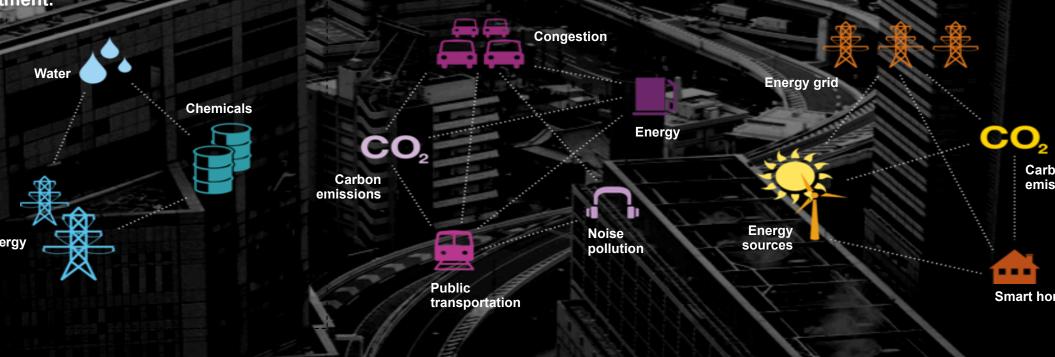
eal-life interaction between humans and cyberspace, enabled by enriched input and output vices on and in the body and in the surrounding environment

ourtesy: J. Rabaey

I Smarter Planet Initiative: nething profound is happening… CYBER PHYSICAL SYSTE

ntelligent systems that gather, synthesize and apply nformation will change the way entire industries operate.

nart water

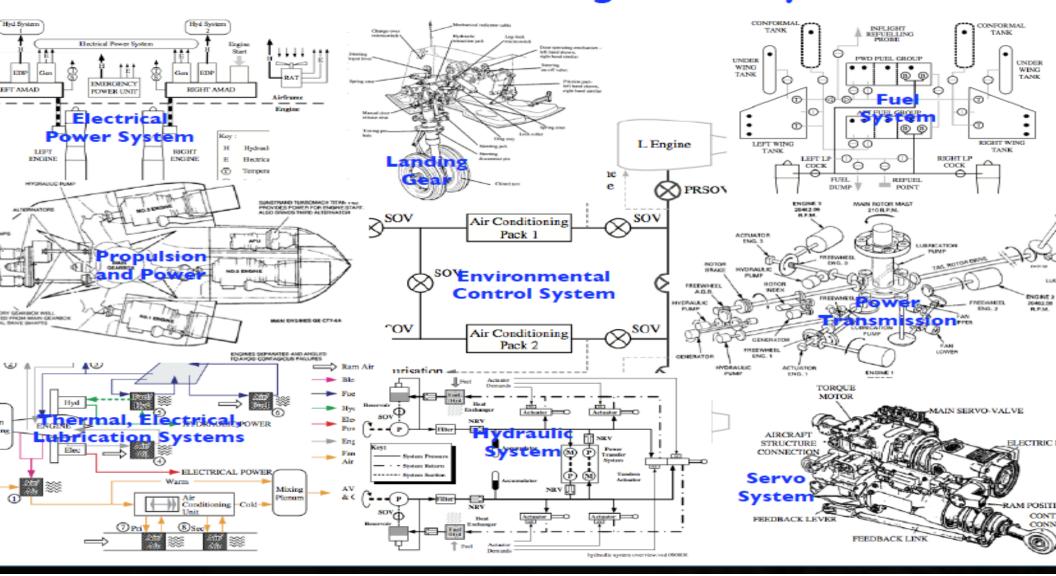

ly monitoring and management inologies to help optimize the lability, delivery, use, and quality ater as well as related systems uding energy and chemical tment.

Smart traffic

Use real-time traffic prediction and dynamic tolling to reduce congestion and its byproducts while positively influencing related systems.

Smart energy

Analyze customer usage and provid customized products and services help to boost efficiency from the so through the grid to the end user.


/ision 2025

- Every object will be smart
- The Ensemble is the Function!
- Function determined by availability of sensing, actuation, connectivity, computation, storage and energy
- Collaborating to present unifying experiences or to fulfill common goals

humongous networked, distributed, adaptive, hierarchic hybrid control problem

An example of Cyber-Physical System (provided by UTC for MuSyC)

Aircraft Vehicle Management System

VMS Challenge Problem v1.0 (1Nov2010)

MS Functions (replace flight engineer)

- Operate and monitor engine/aircraft systems ontrols and indicators;
- Perform engine starts, monitor run-up, flight peration and engine shutdown;
- Operate engine controls to provide desired fficiency and economy;
- Monitor engine instruments throughout period f operation;
- Control, monitor and regulate some or all ircraft systems: hydraulic, pneumatic, fuel, lectronic, air conditioning, pressurization; entilation; lubrication communication, avigation, radar, etc

MS architecture (design exploration)

Implement fully distributed system, with all ubsystems integrated across a networked ommunications interface

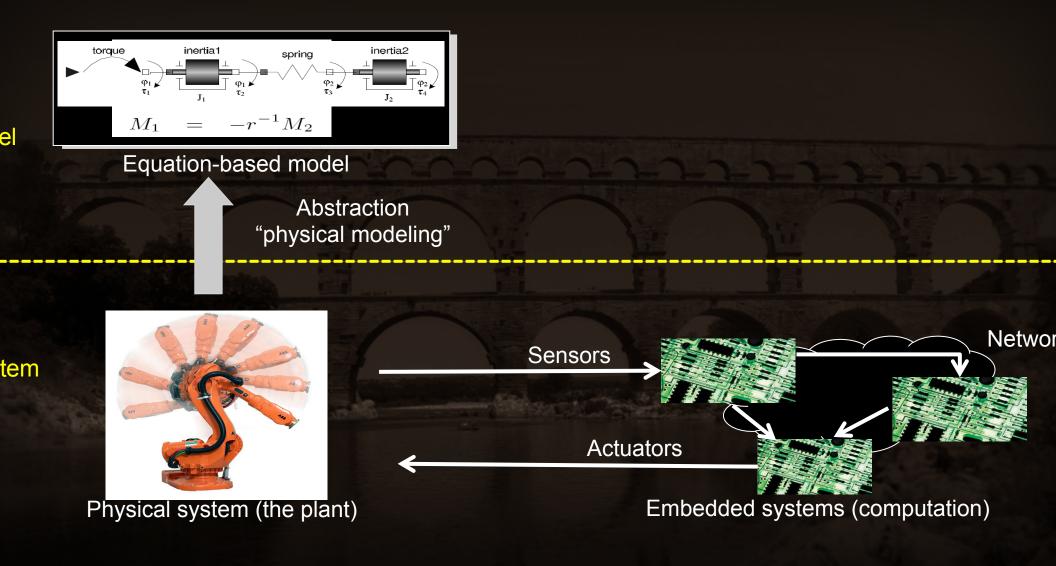
System Demonstrations

- System startup: From a cold start, turn all subsystems on and go into a normal operating mode
- Transport mission: pick up ground cargo usin winch from hovering configuration, transport carg as swung load to drop-off location, deposit on ground, and depart from area
- Landing operations: support aircraft landing i easy (daylight, clear conditions), moderate (nighttime and/or rainy conditions) and difficult (dusty with icy weather) conditions
- Safing mode: perform operations that put vehi in safe operating mode, depending on condition vehicle
- System diagnostics: during normal operation log diagnostic data from all subsystems, w/ variable resolution

Vhere CPS Differs

The traditional embedded systems problem.

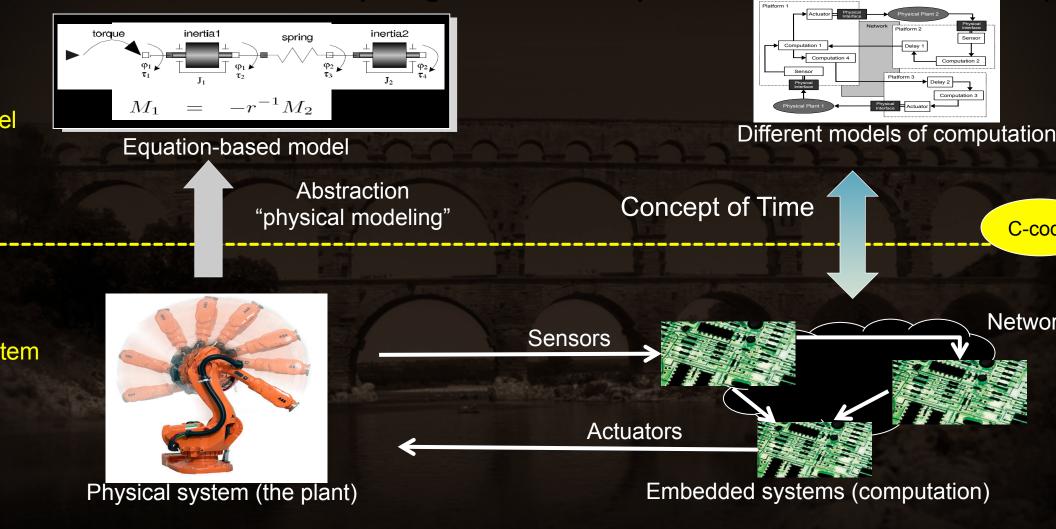
 Embedded system is the union of computing hardware and software immersed in a physical system it monitors and/or controls. The physical system is a given. The design problem is about the embedded system only.


Hybrid Systems

Mixed discrete and continuous time systems

The CPS problem.

- Cyber-Physical Systems (CPS): Orchestrating networked computational resources with physical systems
- Co-design of physical system and controller
- Computation and networking integrated with physical processes. The technical problem is managing dynamics, time, and concurrency in **networked**, **distributed** computational + physical systems.


deling Cyber-Physical Systems

Courtesy: D. Broman

deling Cyber-Physical Systems

e, ASV: A framework for comparing models of computation, IEEE Trans. CAD, 1998)

<u>Courtesy: D. Broman</u>

S modeling challenges for CPS

richer, systems view of computer science is needed. Ingredients include:

- riching CS models with relevant physical/resource properties
 - Physical, model-based computing
 - Resource aware (time/energy) computing

rmal composition of multiple physics, models of computation, languages

Composition of heterogeneous components

pact of cyber components on physical components and vice versa

Physically-aware computing

Specific Challenges Derler, Lee, ASV, Proc. Of the IEEE, Jan. 2012)

- hallenge 1: Models With Solver-Dependent, Nondeterminate, or Zeno ehavior
- hallenge 2: Keeping Model Components Consistent
- hallenge 3: Preventing Misconnected Model Components
- hallenge 4: Modeling Interactions of Functionality and Implementation
- hallenge 5: Modeling Distributed Behaviors
- hallenge 6: System Heterogeneity

low Did we Cope with Complexity?

ASV, Corsi e Ricorsi: The EDA Story, IEEE Solid State Circuits Magazine, 2010)

Methodologies (Freedom from Choice)

General Principles

raditionally complexity has been managed by two basic approaches:

- Decomposition: reduce the number of items to consider by breaking the design object into semi-independent parts (*divide et impera*)
- Abstraction: reduce the number of items by aggregating objects and by eliminating unnecessary details with respect to the goal at hand

Complexity is also managed by "construction"

- Constrain "artificially" the space (regular layout, synchronous designs)
- Start high in the abstraction layers and define a number of refinement steps that go from the initial description to the final implementation

he Dilemma

Raffaello Sanzio, The Athens School

conclusion

Ve need a design and integration platform

- To deal with heterogeneity:
 - Where we can deal with Hardware and Software
- Where we can mix digital and analog, cyber and physical
- Where we can assemble internal and external IPs
- Where we can work at different levels of abstraction
- To handle the design chain
- To support integration
- Tool integration
- IP integration
- Team Integration

Platform-Based Design with Contracts can be the foundation for this platform

inal Words of Wisdom

The Way Forward for CPS

Everything is Connected: Society, Electronic and System Industry facing an array of period problems from design to manufacturing involving complexity, power, liability, re-configurability, integration....

- Complexity is growing more rapidly than ever seen
- Interactions among subsystems increasingly more difficult to predict
- Pre-existing systems put to work to provide new services
- Need work at all levels: Methodology, Modeling, Tools, Algorithms

Deep collaboration among

- Governments, industry, and research centers
- Different Disciplines : Control, Communication, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemistry, Biology...

References to our Work

cknowledgements: A. Benveniste, W. Damm, C. Jacobson, E. Lee, R. Passerone, J. ztipanovits

- Special Issue on CPS, Proc. Of the IEEE, Vol. 100, n.1., Jan. 2012
- P. Derler, E. Lee, A. Sangiovanni Vincentelli, Modeling Cyber–Physical Systems, Vol.100, n.1, pp. 13-28, Jan 2012
- A. Sangiovanni Vincentelli, W. Damm, R. Passerone, Taming Dr. Frankenstein: Contract-Based Design for Cyber-physical Systems, Semi-plenary presentation CDC 2011, also European Journal on Control, 2012, to appear
- A. Sangiovanni-Vincentelli, Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design, Proceedings of the IEEE, Vol. 95, N. 3, pp. 467-506, March 2007.
- A. Sangiovanni-Vincentelli, S. Shukla, J. Sztipanovits, G. Yang, D. Mathaikutty, "Metamodeling: Ar Emerging Representation Paradigm for System-Level Design", Special Section on Meta-Modeling, IEEE Design & Test, vol. 26, no. 3, pp. 54-69, May/June 2009.
- A. Sangiovanni-Vincentelli, Corsi e Ricorsi: The EDA Story, IEEE Solid State Circuits Magazine, Vol. 2 n. 3,pp. 6-26, Summer 2010 (special issue on work by A. Sangiovanni Vincentelli)