The Earth seen from Space by

Radar Remote Sensing – a Vision for 2025

Knowledge for Tomorrow

Alberto Moreira

German Aerospace Center – DLR

Microwaves and Radar Institute

How spaceborne radar works...

Synthetic Aperture Radar (SAR)

Radar Interferometry

SIR-C/X-SAR - Shuttle Imaging Radar 1 / 2

SRTM – Shuttle Radar Topography Mission

Janice Voss, Kevin Kregel, Dominic Gorie, Janet Kavandi Mamoru Mohri, Gehard Thiele

SRTM – First Results

High-Resolution Spaceborne Radars

Launched 15 June, 2007

TERRA SAR X ... during the environmental tests

Image quality of spaceborne radar systems (Year 2000) ca. $10 \text{ m} \times 20 \text{ m}$ resolution

Pyramids of Giza, Egypt

Disaster Monitoring

Deepwater Horizon Gulf of Mexico 30 April 2010

100 km (54 nmi)

DLR Center for Satellite based Crisis Information - ZKI

Shiogama

Tagajo

Sendai

Shichigahama

Estimated directly affected inhabitants

> 4.000 - 6200 people/km ²
> 2.000 - 4.000 people/km ²
> 1.000 - 2.000 people/km ²
> 500 - 1.000 people/km ²
≤ 500 people/km²
no data

TerraSAR-X Sydney, Australia multi-temporal images

Deformation: Train Station Berlin

TerraSAR-X

Google Earth

Deformation: Train Station Berlin

Launched 21 June, 2010

Standards for Digital Elevation Models (DEM)

TanDEM-X: First Digital Elevation Model

DLR

ANDEM

Data Acquisition – Timeline over 3 Months

Salar de Uyuni, Bolivia

1

fulle i

Iceland

Future Spaceborne Radar Systems

Earthquakes

USSS HERE IS IN 200

Volcanoes

Land & Sea Ice

Ocean

Land Environment

Subsidence

Traffic

Reconnaissance

Dynamic Processes on the Earth Surface

Tandem-L

Tandem-L Mission Concept

Deformation Mode

acquisitions (image stacks)

Deployable Reflector Antennas

-

M

Digital Beamforming with Reflector Antennas

29999999 2

चित्र विद्य

8

digital feed array with T/R modules

Digital Beamforming with Reflector Antennas

Digital Beamforming with Reflector Antennas

Comparison of Imaging Capacity

Tandem-L

	Tandem-L Science Products	Resolution	Revisit
Biosphere	Forest height	20 - 50 m	16 days - seasonal
	Above ground biomass		
	Vertical forest structure		
	Plate tectonics	5 - 100 m	weekly
Geo-/	Volcanoes		
Lithosphere	Landslides		
	Deformation		
TATA	Glacier flow	50 - 500 m	weekly
Cryo- & Hydrosphere	Soil moisture		weekly
	Water level change		on demand
	Snow water equivalent		seasonal
	Ice structure Change		seasonal
	Ocean Currents		weekly
Global	Digital Terrain and surface model	20 - 50 m	yearly

Vision for Radar Remote Sensing

Low Earth Orbit (LEO) Satellites

Geostationary illuminator + small receivers

Medium Earth Orbit (MEO) Satellites

- Short revisit times by multiple SAR satellites
- Conventional technique
 with low risk
- Constant illumination with geostationary transmitter
- Signal reception by passive low-cost micro-satellites
- Huge simultaneous access area

•

• Multiple revisits per day with one satellite

Continuous Monitoring of a Dynamic Earth

A

