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. Cloud Computing: An Economics-Driven Wave
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* From http://en.wikipedia.org/wiki/Hype cycle
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. NIST Cloud Definition Framework
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. Homogeneity to Amortize Fixed
Costs & Achieve Economies of Scale

e “Any customer can have a car painted
any color that he wants so long as it
is black” — Henry Ford, 1909

« Amazon believes there is around a 7x cost savings for
hardware & administrative costs at Internet scale vs.
Enterprise Scale

— Fewer economies of scale for power-related costs
e Generic cloud apps: Facebook, Twitter, Amazon, Gmail
e Custom cloud apps most frequently seen in the App Store

e Nearly 100% of Oracle On-Demand Enterprise
Applications have requirements for customizations: SQL
tables, Java classes, etc.
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. Economic Driving Factors in the Cloud—Amazon

Monthly Costs Assumptions:

Facility: ~$88M for 8MW facility
Servers: Roughly 46k @ $1.45k each
Server power draw at 30% load: 80%

M Servers

M Networking Commercial Power: ~$0.07/kWhr
Equipment
Power Distribution ]
& Cooling Conclusion: 34% of costs
¥ Power related to power (trending
upwards)

M Other Infrastructure

3yr server, 4yr net gear, & 10 yr infrastructure amortization © James Hamilton, VP Amazon.com — Mix 2010

» Eric’s Comments:
+ Cited cost of software development is zero (equal to marginal cost)
« 100 software developers @ $250k/yr = $25m/yr = not negligible even at cloud scale
* Don’t build your data center in Germany @ 36¢/ KWhr or Denmark @ 40 ¢ / kWhr
* In many cases power & fixed asset sizing is a hard limit
+ Benefits of cloud scale come from amortization HW & admin scale
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. Elasticity vs. Heterogeneity

 The more heterogeneous infrastructure is required
to run applications, the less elastic the cloud may be

— If switching a server/core/cluster from one application to another
has high startup costs, response time will suffer

— Application-specific hardware may not be fungible: what
percentage of the time is the GPU on your laptop used?
 Elasticity has the same kinds of benefits and limits as
asset diversification does on a financial portfolilo
— There still may be many “black swans” or correlated events that
require significant over-provisioning
* As energy costs become more critical, over-provisioning
HW means less as long as it is power-gated
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. Why does Cloud Computing Require
Smarter Application Developers?

e Google, Facebook & Amazon hire
lots of the worlds smartest engineers to
build many applications that are fairly straightforward
outside of their scalability requirements

e Application development at Internet scale requires lots
of deep systems thinking about programming models,
data movement, and transactional consistency

— All of this gets in the way of doing what the customer wants

* Most custom apps (Mobile or Enterprise) aren’t
running at Internet scale
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. My Argument in a Nutshell

« Cloud computing driven by economies of scale, but...

* the economics assumes SW cost = 0 while pushing complexity into
applications to get the necessary scale!

» only works for generic apps
 Elasticity helps drive up utilization & drive down HW costs
 Elasticity may drive utilization up 2X, reducing HW cost by 2
« But specialization can get you an order of magnitude in efficiency
» Since HW costs & power costs are similar, elasticity is secondary
* However, HW specialization also drives up SW costs

 Better software abstractions are needed to address productivity
costs of cloud scale (parallelism) and specialized HW
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. The Great Whales of Computing Research:
Power Efficiency & Parallelism at Scale

- —_————

. @ °* Power considerations force
more parallelism

 Programming parallel
systems at scale is too hard

 Homogeneity & generality
are the core limits

» Will scalability continue to be a big issue for Internet Applications?
» Will Internet usage growth rates drop below Moore’s Law?
* Internet usage went from 1.1b to 2.2b users in the last 5 years

» Transistor counts doubling every 2 years (ITRS roadmap to 2026
says we'll slow to doubling every 3 years)
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. Limiting Generality Enables More Efficient Hardware

Performance
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. Big power savings In the processor
with application-specific hardware

e Anton molecular

e H.264 encode study

1000 dynamics computer
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4 cores +ILP +SIMD  + custom inst ASIC 400 MHz. 100x power savings
H
Horowitz et al. Understanding Sources of *1000x performance improvement

Inefficiency in General-Purpose Chips (ISCA 2010) -Supercomputing 2009 Best Paper
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. Specialized HW is growing

 Mobile phones:

— Processing moving from the general purpose ARM processor to
DSPs and fixed-function units

* Network processing

— Vendors like Netlogix and Cavium as well as FPGA vendors like
Xilinx are adding more fixed function silicon

e Engineered systems like Exadata can gain 10X in perf.
— Specialize rack components by pushing scans to the storage nodes
e Even Intel is adding application-specific ISA extensions

e Hardware refresh cycles are less than or equal to the
product release cycles for platform software: ~2 years

e Vertical integration is returning
— IBM & Apple, now Oracle and Google
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. Challenges for Hardware Specialization

e Difficult to identify legacy software that can be
accelerated via hardware: two approaches to this

— HW/SW co-design
— Higher-level language abstractions (e.g. DirectX)

e Latency & bandwidth between the specialized computing
units and the generalized computer core

— Overhead from OS & PCle can dwarf accelerator benefits without large
granules of work to offload

e Simulator performance for co-designed software

 Development costs at the hardware level still high

— VeriLog development & verification costs are high & growing as
process technology improves

— Higher-level HW design (e.g. compiling C to HW) still inefficient



. Limiting Generality Can Make For More Productive
Software Development

Performance
IMPLICIT —
PARALLELISM [ @

Domain ~ p,
Specific R areee S,
Languages —
SQL Java
MATLAB

Productivity  .a pgthon W Generality
N

L

ORACLE



Benefits of Using DSLs for Parallelism

Productivity

 Shield most programmers from the difficulty of parallel programming

» Focus on developing algorithms and applications and not on low level
implementation details

Performance

« Match high level domain abstraction to generic parallel execution patterns

* Restrict expressiveness to more easily and fully extract available
parallelism

» Use domain knowledge for static/dynamic optimizations

-
P

Portability and forward scalability

* DSL & Runtime can be evolved to take advantage of latest hardware

features

 Applications remain unchanged

* Allows innovative HW without worrying about application portability
&
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. DSLs spreading to more domains
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— Statistics
— Analytics
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. Challenges for Domain Specific Languages

e |ssues with DSLs in the past:
— Extensibility and interoperability—is embedding needed?
— Long-term viability of the language
e |P created with languages is typically valuable and long-lived
— Cost to create the language
— Availability of tools for language users
— Learning curve for the language
 Why now?
— Need for productive ways to exploit parallelism & custom HW

— Metaprogramming tools to generate compilers & tools can reduce
the costs of DSL creation

— Language tools are improving to get learning curve - library usage

— The future may see the DSLs agglomerate into more general
languages as we understand requirement overlap better
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. Conclusions & Predictions...

e Power & developer productivity will drive
tech directions beyond 2020

— Not hardware costs or sysadmin costs ,

— 20" century has shown that homogeneity is only the first step

e More of us will program in more specialized languages that
run on more specialized computers
— Hardware / software co-design (iPhone, ExaData, ...) will grow
— The number of languages & HW platforms will grow
— Current technology stacks will obviously continue

e Tweaking the generality tradeoffs

— Parallel computing at scale currently application-specific

* Move from application domains to algorithmic domains to
increase generality across sets of applications, if not all
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. Disclaimer: there is another major e
argument for cloud computing that ™" >
NIST doesn’t cover: continuous feedback

Opt

——0W

Many domains need continuous small innovations
rather than big-picture architectural changes, e.qg.
relevance ranking of search results

— Important when quality of output is not easily quantifiable

Cloud operators can see apps as they are used
— Cloud providers can learn from user behavior & their data
— Straightforward tradeoff of privacy for functionality

Cloud feedback loops work best when goodness is
subjective but requirements are still generalizable
across customers
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Hardware and Software
Engineered to Work Together
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BACKUP SLIDES
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. Example Graph Algorithm:
Betweenness Centrality

e (Node-) Betweenness
Centrality
— A measure that tells how
‘central’ a node is in the graph
— Math. Definition

« How many shortest paths
between any two nodes
goes through this node.
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[Brandes 2001]

Cglv] — 0,v e V;
for s € V do

BFS
Order

Compute sigma from parents

S

Reverse
BFS

Compute delta from children

end
end

‘ if w # s then Cplw] — Cplw] + o[w];

Order 47

Betweenness Centrality in a graph DSL

Procedure comp_BC(G: Graph, BC: Node_ Property<Float>(G))

Parallel
Assignment

// temporar
Node_Property<Float>(G) sigma Parallel
Node_Property<Float>(G) delta Iteration

G.sigma ; // Initialize
G.delta c
s.sigma - Parallel

BFS

// BFS order iteration from s
InBFS(v: G.Nodes From s) {
v.sigma = [/ Summing over BFS parents
Sum (w:v.UpNbrs) {w.sigma};

1
J

// Reverse-BFS order iteration to s
InRBFS(v:G.Nodes To s)(v!=s) {
v.delta = // Summing over BFS children
Sum (w:v.DownNbrs) {
v.sigma / w.sigma ‘\@\+ w.delta) };

N

v.BC v.delta s; [/ accumuiaye BC

Reduction

ORACLE



