
<Insert Picture Here>

The Coming Age of Specialized (Cloud) Computing Systems
IEEE Technology Time Machine – Dresden 2012

Eric Sedlar
Technical Director, Oracle Labs

2

Cloud Computing: An Economics-Driven Wave

Cloud	

Computing	

*	
 From	
 http://en.wikipedia.org/wiki/Hype_cycle	
 	

2

3

NIST Cloud Definition Framework

Community
Cloud

Private
Cloud

Public Cloud

Hybrid
Clouds

Deployment
Models

Service
Models

Essential
Characteristics

Common
Characteristics

Software as a
Service (SaaS)

Platform as a
Service (PaaS)

Infrastructure as
a Service (IaaS)

Resource Pooling
Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

Low Cost Software
Virtualization Service Orientation

Advanced Security

Homogeneity
Massive Scale Resilient Computing

Geographic Distribution

4

Homogeneity to Amortize Fixed
Costs & Achieve Economies of Scale

•  “Any customer can have a car painted
any color that he wants so long as it
is black” – Henry Ford, 1909
•  Amazon believes there is around a 7x cost savings for

hardware & administrative costs at Internet scale vs.
Enterprise Scale
–  Fewer economies of scale for power-related costs

•  Generic cloud apps: Facebook, Twitter, Amazon, Gmail
•  Custom cloud apps most frequently seen in the App Store
•  Nearly 100% of Oracle On-Demand Enterprise

Applications have requirements for customizations: SQL
tables, Java classes, etc.

5

Economic Driving Factors in the Cloud—Amazon

•  Eric’s Comments:
•  Cited cost of software development is zero (equal to marginal cost)

•  100 software developers @ $250k/yr = $25m/yr à not negligible even at cloud scale
•  Don’t build your data center in Germany @ 36¢/ KWhr or Denmark @ 40 ¢ / kWhr
•  In many cases power & fixed asset sizing is a hard limit
•  Benefits of cloud scale come from amortization HW & admin scale

Conclusion: 34% of costs
related to power (trending
upwards)

Assumptions:
Facility: ~$88M for 8MW facility
Servers: Roughly 46k @ $1.45k each
Server power draw at 30% load: 80%
Commercial Power: ~$0.07/kWhr

54%	

8%	

21%	

13%	

5%	
 Servers	

Networking	

Equipment	

Power	
 Distribu>on	

&	
 Cooling	

Power	

Other	
 Infrastructure	

Monthly	
 Costs	

3yr	
 server,	
 4yr	
 net	
 gear,	
 	
 &	
 10	
 yr	
 infrastructure	
 amor7za7on	
 © James Hamilton, VP Amazon.com – Mix 2010

6

Elasticity vs. Heterogeneity

•  The more heterogeneous infrastructure is required
to run applications, the less elastic the cloud may be
–  If switching a server/core/cluster from one application to another

has high startup costs, response time will suffer
–  Application-specific hardware may not be fungible: what

percentage of the time is the GPU on your laptop used?

•  Elasticity has the same kinds of benefits and limits as
asset diversification does on a financial portfolilo
–  There still may be many “black swans” or correlated events that

require significant over-provisioning

•  As energy costs become more critical, over-provisioning
HW means less as long as it is power-gated

7

Why does Cloud Computing Require
Smarter Application Developers?

•  Google, Facebook & Amazon hire
lots of the worlds smartest engineers to
build many applications that are fairly straightforward
outside of their scalability requirements
•  Application development at Internet scale requires lots

of deep systems thinking about programming models,
data movement, and transactional consistency
–  All of this gets in the way of doing what the customer wants

•  Most custom apps (Mobile or Enterprise) aren’t
running at Internet scale

8

My Argument in a Nutshell

•  Cloud computing driven by economies of scale, but…
•  the economics assumes SW cost = 0 while pushing complexity into

applications to get the necessary scale!
•  only works for generic apps

•  Elasticity helps drive up utilization & drive down HW costs
•  Elasticity may drive utilization up 2X, reducing HW cost by 2

•  But specialization can get you an order of magnitude in efficiency
•  Since HW costs & power costs are similar, elasticity is secondary

•  However, HW specialization also drives up SW costs

•  Better software abstractions are needed to address productivity
costs of cloud scale (parallelism) and specialized HW

9

• Power considerations force

more parallelism
• Programming parallel

systems at scale is too hard
• Homogeneity & generality

are the core limits

The Great Whales of Computing Research:
Power Efficiency & Parallelism at Scale

•  Will scalability continue to be a big issue for Internet Applications?
•  Will Internet usage growth rates drop below Moore’s Law?

•  Internet usage went from 1.1b to 2.2b users in the last 5 years
•  Transistor counts doubling every 2 years (ITRS roadmap to 2026

says we’ll slow to doubling every 3 years)

10

Limiting Generality Enables More Efficient Hardware

Performance

Energy Efficiency Generality

X86, SPARC, etc.

GPUs

Smartphone
Apps

Database
Appliance

NPUs

11

Big power savings in the processor
with application-specific hardware

• H.264 encode study

• Anton molecular
dynamics computer

1

10

100

1000

4 cores + ILP + SIMD + custom inst ASIC

Performance

Energy Savings

Horowitz et al. Understanding Sources of
Inefficiency in General-Purpose Chips (ISCA 2010)

• 400 MHz, 100x power savings
• 1000x performance improvement
• Supercomputing 2009 Best Paper

12

Specialized HW is growing

•  Mobile phones:
–  Processing moving from the general purpose ARM processor to

DSPs and fixed-function units

•  Network processing
–  Vendors like Netlogix and Cavium as well as FPGA vendors like

Xilinx are adding more fixed function silicon

•  Engineered systems like Exadata can gain 10X in perf.
–  Specialize rack components by pushing scans to the storage nodes

•  Even Intel is adding application-specific ISA extensions
•  Hardware refresh cycles are less than or equal to the

product release cycles for platform software: ~2 years
•  Vertical integration is returning
–  IBM & Apple, now Oracle and Google

13

Challenges for Hardware Specialization

•  Difficult to identify legacy software that can be
accelerated via hardware: two approaches to this
–  HW/SW co-design
–  Higher-level language abstractions (e.g. DirectX)

•  Latency & bandwidth between the specialized computing
units and the generalized computer core
–  Overhead from OS & PCIe can dwarf accelerator benefits without large

granules of work to offload

•  Simulator performance for co-designed software
•  Development costs at the hardware level still high
–  VeriLog development & verification costs are high & growing as

process technology improves
–  Higher-level HW design (e.g. compiling C to HW) still inefficient

14

Limiting Generality Can Make For More Productive
Software Development

Domain
Specific

Languages

Performance

Productivity Generality

15

Benefits of Using DSLs for Parallelism

Productivity
• Shield most programmers from the difficulty of parallel programming
• Focus on developing algorithms and applications and not on low level

implementation details

Performance
• Match high level domain abstraction to generic parallel execution patterns
• Restrict expressiveness to more easily and fully extract available

parallelism
• Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
• DSL & Runtime can be evolved to take advantage of latest hardware

features
• Applications remain unchanged
• Allows innovative HW without worrying about application portability

16

DSLs spreading to more domains

•  Application Domains
–  Bioinformatics
–  Physics
–  Financials
–  Network management

•  Algorithmic Domains
–  Graph Analysis
–  Statistics
–  Analytics

Ayush K.
Kehdekar

Kevin
Bacon

High BC Low BC

[Image source; Wikipedia]

17

Challenges for Domain Specific Languages

•  Issues with DSLs in the past:
–  Extensibility and interoperability—is embedding needed?
–  Long-term viability of the language

•  IP created with languages is typically valuable and long-lived
–  Cost to create the language
–  Availability of tools for language users
–  Learning curve for the language

•  Why now?
–  Need for productive ways to exploit parallelism & custom HW
–  Metaprogramming tools to generate compilers & tools can reduce

the costs of DSL creation
–  Language tools are improving to get learning curve à library usage
–  The future may see the DSLs agglomerate into more general

languages as we understand requirement overlap better

18

Conclusions & Predictions…

•  Power & developer productivity will drive
tech directions beyond 2020
–  Not hardware costs or sysadmin costs
–  20th century has shown that homogeneity is only the first step

•  More of us will program in more specialized languages that
run on more specialized computers
–  Hardware / software co-design (iPhone, ExaData, …) will grow
–  The number of languages & HW platforms will grow
–  Current technology stacks will obviously continue

•  Tweaking the generality tradeoffs
–  Parallel computing at scale currently application-specific
•  Move from application domains to algorithmic domains to

increase generality across sets of applications, if not all

19

Disclaimer: there is another major
argument for cloud computing that
NIST doesn’t cover: continuous feedback

•  Many domains need continuous small innovations
rather than big-picture architectural changes, e.g.
relevance ranking of search results
–  Important when quality of output is not easily quantifiable

•  Cloud operators can see apps as they are used
–  Cloud providers can learn from user behavior & their data
–  Straightforward tradeoff of privacy for functionality

•  Cloud feedback loops work best when goodness is
subjective but requirements are still generalizable
across customers

20

21

BACKUP SLIDES

22

Example Graph Algorithm:
Betweenness Centrality

•  (Node-) Betweenness
Centrality
–  A measure that tells how

‘central’ a node is in the graph
–  Math. Definition
•  How many shortest paths

between any two nodes
goes through this node.

Ayush K.
Kehdekar

Kevin
Bacon

High BC Low BC

[Image source; Wikipedia]

23

Betweenness Centrality in a graph DSL
[Brandes 2001]

s

v

w w w

Reverse
BFS

Order

Compute delta from children

s

w w

v

BFS
Order

Compute sigma from parents

Parallel
Assignment

Parallel
BFS

Parallel
Iteration

Reduction

