ORACLE

The Coming Age of Specialized (Cloud) Computing Systems
IEEE Technology Time Machine — Dresden 2012

Eric Sedlar
Technical Director, Oracle Labs

. Cloud Computing: An Economics-Driven Wave

AVISIBILITY

Cloud .
computing k of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

>

* From http://en.wikipedia.org/wiki/Hype cycle

ORACLE
2

. NIST Cloud Definition Framework

Hybrid
Clouds
Deployment .
- Community
Private Public Cloud
Models Cloud Cloud ubli u
Service
Models

On Demand Self-Service
Essential Broad Network Access Rapid Elasticity
Characteristics Resource Pooling Measured Service

Common Resilient Computing

Geographic Distribution
Characteristics grap

Service Orientation
Low Cost Software Advanced Security

ORACLE

. Homogeneity to Amortize Fixed
Costs & Achieve Economies of Scale

e “Any customer can have a car painted
any color that he wants so long as it
is black” — Henry Ford, 1909

« Amazon believes there is around a 7x cost savings for
hardware & administrative costs at Internet scale vs.
Enterprise Scale

— Fewer economies of scale for power-related costs
e Generic cloud apps: Facebook, Twitter, Amazon, Gmail
e Custom cloud apps most frequently seen in the App Store

e Nearly 100% of Oracle On-Demand Enterprise
Applications have requirements for customizations: SQL
tables, Java classes, etc.

ORACLE

. Economic Driving Factors in the Cloud—Amazon

Monthly Costs Assumptions:

Facility: ~$88M for 8MW facility
Servers: Roughly 46k @ $1.45k each
Server power draw at 30% load: 80%

M Servers

M Networking Commercial Power: ~$0.07/kWhr
Equipment
Power Distribution]
& Cooling Conclusion: 34% of costs
¥ Power related to power (trending
upwards)

M Other Infrastructure

3yr server, 4yr net gear, & 10 yr infrastructure amortization © James Hamilton, VP Amazon.com — Mix 2010

» Eric’s Comments:
+ Cited cost of software development is zero (equal to marginal cost)
« 100 software developers @ $250k/yr = $25m/yr = not negligible even at cloud scale
* Don’t build your data center in Germany @ 36¢/ KWhr or Denmark @ 40 ¢ / kWhr
* In many cases power & fixed asset sizing is a hard limit
+ Benefits of cloud scale come from amortization HW & admin scale

ORACLE

. Elasticity vs. Heterogeneity

 The more heterogeneous infrastructure is required
to run applications, the less elastic the cloud may be

— If switching a server/core/cluster from one application to another
has high startup costs, response time will suffer

— Application-specific hardware may not be fungible: what
percentage of the time is the GPU on your laptop used?
 Elasticity has the same kinds of benefits and limits as
asset diversification does on a financial portfolilo
— There still may be many “black swans” or correlated events that
require significant over-provisioning
* As energy costs become more critical, over-provisioning
HW means less as long as it is power-gated

ORACLE

. Why does Cloud Computing Require
Smarter Application Developers?

e Google, Facebook & Amazon hire
lots of the worlds smartest engineers to
build many applications that are fairly straightforward
outside of their scalability requirements

e Application development at Internet scale requires lots
of deep systems thinking about programming models,
data movement, and transactional consistency

— All of this gets in the way of doing what the customer wants

* Most custom apps (Mobile or Enterprise) aren’t
running at Internet scale

ORACLE

. My Argument in a Nutshell

« Cloud computing driven by economies of scale, but...

* the economics assumes SW cost = 0 while pushing complexity into
applications to get the necessary scale!

» only works for generic apps
 Elasticity helps drive up utilization & drive down HW costs
 Elasticity may drive utilization up 2X, reducing HW cost by 2
« But specialization can get you an order of magnitude in efficiency
» Since HW costs & power costs are similar, elasticity is secondary
* However, HW specialization also drives up SW costs

 Better software abstractions are needed to address productivity
costs of cloud scale (parallelism) and specialized HW

ORACLE

. The Great Whales of Computing Research:
Power Efficiency & Parallelism at Scale

- —_————

. @ °* Power considerations force
more parallelism

 Programming parallel
systems at scale is too hard

 Homogeneity & generality
are the core limits

» Will scalability continue to be a big issue for Internet Applications?
» Will Internet usage growth rates drop below Moore’s Law?
* Internet usage went from 1.1b to 2.2b users in the last 5 years

» Transistor counts doubling every 2 years (ITRS roadmap to 2026
says we'll slow to doubling every 3 years)

ORACLE

. Limiting Generality Enables More Efficient Hardware

Performance

>

GPUs

Database
Appliance

X86, SPARC, etc.

NPUs

Energy Efficiency Generality

Smartphone
Apps

ORACLE

. Big power savings In the processor
with application-specific hardware

e Anton molecular

e H.264 encode study

1000 dynamics computer
v e TR)
=#=performance O oz 111 ; @) ; 4K 8
«N=Energy Savings 0
100
10
H
1 - .é. . , . , : : arraaseterserss n
4 cores +ILP +SIMD + custom inst ASIC 400 MHz. 100x power savings
H
Horowitz et al. Understanding Sources of *1000x performance improvement

Inefficiency in General-Purpose Chips (ISCA 2010) -Supercomputing 2009 Best Paper

ORACLE

. Specialized HW is growing

 Mobile phones:

— Processing moving from the general purpose ARM processor to
DSPs and fixed-function units

* Network processing

— Vendors like Netlogix and Cavium as well as FPGA vendors like
Xilinx are adding more fixed function silicon

e Engineered systems like Exadata can gain 10X in perf.
— Specialize rack components by pushing scans to the storage nodes
e Even Intel is adding application-specific ISA extensions

e Hardware refresh cycles are less than or equal to the
product release cycles for platform software: ~2 years

e Vertical integration is returning
— IBM & Apple, now Oracle and Google

ORACLE

. Challenges for Hardware Specialization

e Difficult to identify legacy software that can be
accelerated via hardware: two approaches to this

— HW/SW co-design
— Higher-level language abstractions (e.g. DirectX)

e Latency & bandwidth between the specialized computing
units and the generalized computer core

— Overhead from OS & PCle can dwarf accelerator benefits without large
granules of work to offload

e Simulator performance for co-designed software

 Development costs at the hardware level still high

— VeriLog development & verification costs are high & growing as
process technology improves

— Higher-level HW design (e.g. compiling C to HW) still inefficient

. Limiting Generality Can Make For More Productive
Software Development

Performance
IMPLICIT —
PARALLELISM [@

Domain ~ p,
Specific R areee S,
Languages —
SQL Java
MATLAB

Productivity .a pgthon W Generality
N

L

ORACLE

Benefits of Using DSLs for Parallelism

Productivity

 Shield most programmers from the difficulty of parallel programming

» Focus on developing algorithms and applications and not on low level
implementation details

Performance

« Match high level domain abstraction to generic parallel execution patterns

* Restrict expressiveness to more easily and fully extract available
parallelism

» Use domain knowledge for static/dynamic optimizations

-
P

Portability and forward scalability

* DSL & Runtime can be evolved to take advantage of latest hardware

features

 Applications remain unchanged

* Allows innovative HW without worrying about application portability
&

ORACLE

. DSLs spreading to more domains

O HighBC

Low BC

7)) T 0

S m.m

® ®

= > €
O w mo.&
Q<)
- n O &
O E ,ox E<
= O O 0 g &
af.&n S
”.nluh.menrur
WBPFNQG
A____A_
o o

— Statistics
— Analytics

ORACLE

. Challenges for Domain Specific Languages

e |ssues with DSLs in the past:
— Extensibility and interoperability—is embedding needed?
— Long-term viability of the language
e |P created with languages is typically valuable and long-lived
— Cost to create the language
— Availability of tools for language users
— Learning curve for the language
 Why now?
— Need for productive ways to exploit parallelism & custom HW

— Metaprogramming tools to generate compilers & tools can reduce
the costs of DSL creation

— Language tools are improving to get learning curve - library usage

— The future may see the DSLs agglomerate into more general
languages as we understand requirement overlap better

ORACLE

. Conclusions & Predictions...

e Power & developer productivity will drive
tech directions beyond 2020

— Not hardware costs or sysadmin costs ,

— 20" century has shown that homogeneity is only the first step

e More of us will program in more specialized languages that
run on more specialized computers
— Hardware / software co-design (iPhone, ExaData, ...) will grow
— The number of languages & HW platforms will grow
— Current technology stacks will obviously continue

e Tweaking the generality tradeoffs

— Parallel computing at scale currently application-specific

* Move from application domains to algorithmic domains to
increase generality across sets of applications, if not all

ORACLE

. Disclaimer: there is another major e
argument for cloud computing that ™" >
NIST doesn’t cover: continuous feedback

Opt

——0W

Many domains need continuous small innovations
rather than big-picture architectural changes, e.qg.
relevance ranking of search results

— Important when quality of output is not easily quantifiable

Cloud operators can see apps as they are used
— Cloud providers can learn from user behavior & their data
— Straightforward tradeoff of privacy for functionality

Cloud feedback loops work best when goodness is
subjective but requirements are still generalizable
across customers

ORACLE

Hardware and Software
Engineered to Work Together

ORACLE

BACKUP SLIDES

ORACLE

. Example Graph Algorithm:
Betweenness Centrality

e (Node-) Betweenness
Centrality
— A measure that tells how
‘central’ a node is in the graph
— Math. Definition

« How many shortest paths
between any two nodes
goes through this node.

ORACLE

[Brandes 2001]

Cglv] — 0,v e V;
for s € V do

BFS
Order

Compute sigma from parents

S

Reverse
BFS

Compute delta from children

end
end

‘ if w # s then Cplw] — Cplw] + o[w];

Order 47

Betweenness Centrality in a graph DSL

Procedure comp_BC(G: Graph, BC: Node_ Property<Float>(G))

Parallel
Assignment

// temporar
Node_Property<Float>(G) sigma Parallel
Node_Property<Float>(G) delta Iteration

G.sigma ; // Initialize
G.delta c
s.sigma - Parallel

BFS

// BFS order iteration from s
InBFS(v: G.Nodes From s) {
v.sigma = [/ Summing over BFS parents
Sum (w:v.UpNbrs) {w.sigma};

1
J

// Reverse-BFS order iteration to s
InRBFS(v:G.Nodes To s)(v!=s) {
v.delta = // Summing over BFS children
Sum (w:v.DownNbrs) {
v.sigma / w.sigma ‘\@\+ w.delta) };

N

v.BC v.delta s; [/ accumuiaye BC

Reduction

ORACLE

